Strong Approximation by Dirichlet Integrals in $L^{\lambda}(\mathbf{R})$ -Norm, $1 < \lambda < \infty$

Dang Vu Giang*

AND

Ferenc Móricz*

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary

Communicated by Ronald A. DeVore

Received March 23, 1993; accepted September 24, 1993

Let f be a real valued function which belongs to $L':=L'(-\infty,\infty)$ for some $1 \le r < \infty$. We consider the cosine transform $\hat{f_c}$, sine transform $\hat{f_s}$, (complex) Fourier transform $\hat{f_s}$ and Hilbert transform \hat{f} of f. We study the strong approximation of order p, 0 , of <math>f and \hat{f} by their Dirichlet integrals, respectively. We prove that the saturation class in L^{λ} -norm is the Lizorkin-Triebel space $F_{\lambda, p}^{\alpha}$, where $\alpha = 1/p$, $2 \le p < \infty$, and $1 < \lambda < \infty$. To this effect, we introduce several so-called Littlewood-Paley functions and make use of a number of equivalence theorems. Our machinery is also appropriate to characterize the saturation class concerning the strong approximation of order p of a periodic function $f \in L^1_{2\pi} := L^1(-\pi,\pi)$ by the partial sums of its Fourier series in $L^{\lambda}_{2\pi}$ -norm, where again $2 \le p < \infty$ and $1 < \lambda < \infty$. © 1994 Academic Press, Inc.

1. Preliminaries

We recall the basic notions in the theory of Fourier transforms (see, e.g., [6, Chaps. 1-5]). Let f be a real valued, Lebesgue integrable function on the real line, in sign: $f \in L^1 := L^1(\mathbf{R})$, $\mathbf{R} := (-\infty, \infty)$. Let

$$\hat{f}_c(u) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \cos ut \, dt \tag{1.1}$$

be the cosine transform and

$$\hat{f}_s(u) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \sin ut \, dt, \qquad u \in \mathbf{R}, \tag{1.2}$$

the sine transform of f.

*This research was partially supported by the Hungarian National Foundation for Scientific Research under Grant #234.

These definitions make sense also in the case when $f \in L' := L'(\mathbf{R})$ for some $1 < r \le 2$, since the integrals on the right-hand sides of (1.1) and (1.2) converge in L'-norm, where 1/r + 1/r' = 1. In other words, the integral $\int_{-\infty}^{\infty}$ is meant as the limit in L'-norm of $\int_{-T_1}^{T_2}$ as $T_1, T_2 \to \infty$. We note that in the case where $f \in L'$ for some $2 < r < \infty$, then $\hat{f_c}$ and $\hat{f_s}$ exist only in the sense of a tempered distribution, and they are not functions in general.

The Dirichlet integral of a function $f \in L^1$ is defined by

$$s_{\nu}(f,t) := \int_{0}^{\nu} \{\hat{f}_{c}(u)\cos tu + \hat{f}_{s}(u)\sin tu\} du, \qquad (1.3)$$

the conjugate Dirichlet integral by

$$\tilde{s}_{\nu}(f,t) := \int_{0}^{\nu} \{\hat{f}_{c}(u)\sin tu - \hat{f}_{s}(u)\cos tu\} du, \tag{1.4}$$

the Riesz mean (of first order) by

$$\sigma_{\nu}(f,t) := \int_{0}^{\nu} \left(1 - \frac{u}{\nu}\right) \left\{\hat{f}_{c}(u)\cos tu + \hat{f}_{s}(u)\sin tu\right\} du, \qquad (1.5)$$

and the conjugate Riesz mean (of first order) by

$$\tilde{\sigma}_{\nu}(f,t) := \int_0^{\nu} \left(1 - \frac{u}{\nu}\right) \left\{\hat{f}_{c}(u)\sin tu - \hat{f}_{s}(u)\cos tu\right\} du, \qquad \nu > 0, t \in \mathbf{R}.$$
(1.6)

From (1.1)–(1.6) it follows immediately that

$$s_{\nu}(f,t) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t-u) \frac{\sin \nu u}{u} du, \qquad (1.7)$$

$$\tilde{s}_{\nu}(f,t) = \frac{1}{\pi} \int_{-\pi}^{\infty} f(t-u) \frac{1-\cos\nu u}{u} du, \qquad (1.8)$$

which justify the use of the term "Dirichlet integral," and

$$\sigma_{\nu}(f,t) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t-u) \frac{1-\cos\nu u}{\nu u^2} du,$$
 (1.9)

$$\tilde{\sigma}_{\nu}(f,t) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t-u) \left(\frac{1}{u} - \frac{\sin \nu u}{\nu u^2} \right) du. \tag{1.10}$$

From now on, it suffices to assume that $f \in L^r$ for some $1 \le r < \infty$, since the integrals on the right-hand sides of (1.7)–(1.10) exist in the

Lebesgue sense, due to Hölder's inequality. Thus, we will use (1.7)–(1.10) in the capacity of the definitions of $s_{\nu}(f)$, $\tilde{s}_{\nu}(f)$, $\sigma_{\nu}(f)$, and $\tilde{\sigma}_{\nu}(f)$ for functions f belonging to L' for some $1 \le r < \infty$. Furthermore, we have

$$\sigma_{\nu}(f,t) = \frac{1}{\nu} \int_{0}^{\nu} s_{\mu}(f,t) d\mu, \qquad (1.11)$$

$$\tilde{\sigma}_{\nu}(f,t) = \frac{1}{\nu} \int_{0}^{\nu} \tilde{s}_{\mu}(f,t) \, d\mu, \qquad (1.12)$$

which explain that $\sigma_{\nu}(f)$ and $\tilde{\sigma}_{\nu}(f)$ are also called the "Cesàro means" of f.

Let z := x + iy be a complex number with y > 0. As is known, the Cauchy transform of f is defined by

$$\Phi(f,z) := \int_0^\infty \{\hat{f}_c(u) - i\hat{f}_s(u)\} e^{izu} du.$$
 (1.13)

It is plain that $\Phi(f, z)$ as a function of the complex variable z is analytic on the upper half plane.

We remind the reader that the Hilbert transform \tilde{f} of a function $f \in L^r$ for some $1 \le r < \infty$ is defined by

$$\tilde{f}(t) := \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(u)}{t - u} du = -\lim_{\varepsilon \downarrow 0} \frac{1}{\pi} \int_{\varepsilon}^{\infty} \frac{f(t + u) - f(t - u)}{u} du. \quad (1.14)$$

This integral as well as the limit

$$\Phi(f,t) := \lim_{y \downarrow 0} \Phi(f,t+iy) = f(t) + i\tilde{f}(t)$$
 (1.15)

exists and we have

$$\left(\tilde{f}\right)^{\sim}(t) = -f(t) \tag{1.16}$$

for almost all $t \in \mathbb{R}$. By a famous theorem of M. Riesz, if $f \in L^r$ for some $1 < r < \infty$, then $\tilde{f} \in L^r$ and

$$\tilde{s}_{\nu}(f,t) = s_{\nu}(\tilde{f},t), \qquad t \in \mathbf{R}.$$
 (1.17)

Remark 1. We note that we could equally use complex notations. Namely, the (complex) Fourier transform of a function $f \in L^1$ is defined by

$$\hat{f}(u) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-iut} dt, \quad u \in \mathbf{R}.$$

By (1.1) and (1.2), we have

$$\hat{f}(u) = \frac{1}{2} \{ \hat{f}_c(u) - i\hat{f}_s(u) \}.$$

Assume that $f \in L'$ for some $1 \le r < \infty$. Then the Dirichlet integrals and Riesz means of f can be expressed as

$$\begin{split} s_{\nu}(f,t) &= \int_{-\nu}^{\nu} \hat{f}(u)e^{iut} du, \\ \tilde{s}_{\nu}(f,t) &= \int_{-\nu}^{\nu} (-i\operatorname{sign} u)\hat{f}(u)e^{iut} du, \\ \sigma_{\nu}(f,t) &= \int_{-\nu}^{\nu} \left(1 - \frac{|u|}{\nu}\right)\hat{f}(u)e^{iut} du, \\ \tilde{\sigma}_{\nu}(f,t) &= \int_{-\nu}^{\nu} \left(1 - \frac{|u|}{\nu}\right)(-i\operatorname{sign} u)\hat{f}(u)e^{iut} du, \quad \nu > 0, t \in \mathbf{R}, \end{split}$$

where the left-hand sides are defined by (1.7)-(1.10), respectively.

2. Main Results

Let $f \in L^r$ for some $1 \le r < \infty$ and define

$$\tau_{\nu}(f,t) := s_{\nu}(f,t) - \sigma_{\nu}(f,t),$$

$$\tilde{\tau}_{\nu}(f,t) := \tilde{s}_{\nu}(f,t) - \tilde{\sigma}_{\nu}(f,t), \qquad \nu > 0, t \in \mathbf{R}.$$

By (1.11), (1.12), and (1.17), we have

$$\tilde{\tau}_{\nu}(f,t) = \tau_{\nu}(\tilde{f},t). \tag{2.1}$$

Furthermore, let $\alpha \in \mathbf{R}$ and define

$$\gamma_*(f,t) := \left\{ \int_0^\infty \left| \nu^\alpha \left\{ \tau_\nu(f,t) + i \tilde{\tau}_\nu(f,t) \right\} \right|^p \frac{d\nu}{\nu} \right\}^{1/p},$$

$$g_{2*}(f,t) := \left\{ \int_0^\infty \left| y^{2-\alpha} \Phi''(f,t+iy) \right|^p \frac{dy}{y} \right\}^{1/p}.$$

THEOREM 1. Let $f \in L^r$ for some $1 \le r < \infty$, and let $1 , <math>-\infty < \alpha < 1$. Then

$$g_{2*}(f,t) \le C_{\alpha,p} \gamma_*(f,t), \quad t \in \mathbf{R}.$$
 (2.2)

Here and in the sequel, by C (endowed with certain subscripts) we denote positive constants (depending only on the subscripts indicated) whose value may be different at different occurrences.

Let 1 and define q by <math>1/p + 1/q = 1. The main result of this paper reads as follows.

THEOREM 2. Let $f \in L^p \cap L^{\lambda}$ for some $1 , <math>1 < \lambda < \infty$, and let $0 < \alpha \le \min(1/p, 1/q)$. Then

$$\gamma_{1}(f,t) := \left\{ \int_{0}^{\infty} \left| \nu^{\alpha} \left\{ s_{\nu}(f,t) - f(t) \right\} \right|^{p} \frac{d\nu}{\nu} \right\}^{1/p} \in L^{\lambda}$$
 (2.3)

if and only if

$$I(f,t) := \left\{ \int_0^\infty \left| \frac{f(t+u) - f(t-u)}{u^\alpha} \right|^p \frac{du}{u} \right\}^{1/p} \in L^\lambda. \tag{2.4}$$

Assume $f \in L^r$ for some $1 \le r < \infty$ and 0 . We define the strong approximation of order <math>p of f by its Dirichlet integral as

$$\mathscr{S}_{T}^{p}(f,t) := \left\{ \frac{1}{T} \int_{0}^{T} \left| s_{\nu}(f,t) - f(t) \right|^{p} d\nu \right\}^{1/p}, \qquad T > 0, t \in \mathbf{R}.$$

By Hölder's inequality,

$$\mathcal{S}_{T}^{p}(f,t) \leq \mathcal{S}_{T}^{p_{1}}(f,t) \quad \text{if} \quad 0$$

It is easy to find the saturation order in L^{λ} -norm, where $0 < \lambda < \infty$. Indeed, if

$$\left\{ \int_{-\infty}^{\infty} \left[\mathscr{S}_{T}^{p}(f,t) \right]^{\lambda} dt \right\}^{1/\lambda} = o(T^{-1/p}) \quad \text{as} \quad T \to \infty,$$

then we necessarily have

$$\int_0^\infty \left| s_{\nu}(f,t) - f(t) \right|^p d\nu = 0$$

for almost all $t \in \mathbf{R}$. Fix such t, then $s_{\nu}(f,t) = f(t)$ for all $\nu > 0$. Consequently, f(t) = 0 for almost all $t \in \mathbf{R}$. In other words, the saturation order is $\mathscr{O}(T^{-1/p})$.

Now, Theorem 2 makes it possible to determine the saturation class in L^{λ} -norm, where $2 \le p < \infty$ and $1 < \lambda < \infty$. Namely, if

$$\left\{ \int_{-\infty}^{\infty} \left[\mathscr{S}_{T}^{p}(f,t) \right]^{\lambda} dt \right\}^{1/\lambda} = \mathscr{O}(T^{-1/p}) \quad \text{as } T \to \infty,$$

then we necessarily have

$$\int_{-\infty}^{\infty} \left\{ \int_{0}^{\infty} \left| s_{\nu}(f,t) - f(t) \right|^{p} d\nu \right\}^{\lambda/p} dt < \infty.$$
 (2.6)

This coincides with (2.3) in the particular case where $\alpha = 1/p$. By virtue of Theorem 2, relation (2.6) is equivalent to (2.4) for $\alpha = 1/p$, $2 \le p < \infty$, $1 < \lambda < \infty$, which in turn is equivalent to the fact that $f \in F_{\lambda, p}^{\alpha}$, the so-called Lizorkin-Triebel space (see the remark made after Lemma 5 below).

Remark 2. The symmetric counterpart of Theorem 2 says that

$$\gamma_1(\tilde{f},t) = \left\{ \int_0^\infty \left| \nu^{\alpha} \left\{ \tilde{s}_{\nu}(f,t) - \tilde{f}(t) \right\} \right|^p \frac{d\nu}{\nu} \right\}^{1/p} \in L^{\lambda}$$
 (2.7)

(cf. (1.17)) if and only if

$$I(\tilde{f},t) = \left\langle \int_0^\infty \left| \frac{\tilde{f}(t+u) - \tilde{f}(t-u)}{u^\alpha} \right|^p \frac{du}{u} \right\rangle^{1/p} \in L^{\lambda}.$$
 (2.8)

By virtue of Lemma 6, conditions (2.4) and (2.8) are equivalent. Hence, conditions (2.3) and (2.7) are also equivalent. In particular, this solves the problem of the strong approximation in L^{λ} -norm of the Hilbert transform \tilde{f} by the conjugate Dirichlet integral, too.

3. Auxiliary Results

Let z := x + iy with y > 0. By (1.1), (1.2), and (1.13),

$$\Phi(f,z) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) dt \int_{0}^{\infty} e^{i(z-t)u} du$$

$$= \frac{1}{i\pi} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} dt$$

$$= U(f,x,y) + i\tilde{U}(f,x,y), \qquad (3.1)$$

where

$$U(f,x,y) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \frac{y}{\left(x-t\right)^2 + y^2} dt$$

is the Poisson integral and

$$\tilde{U}(f, x, y) := \frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \frac{x - t}{(x - t)^2 + y^2} dt$$

is the conjugate Poisson integral of f. Similarly to (1.17) and (2.1), we have

$$\tilde{U}(f,x,y) = U(\tilde{f},x,y). \tag{3.2}$$

LEMMA 1. Let $f \in L^r$ for some $1 \le r < \infty$, and let z := x + iy with y > 0. Then

$$i\Phi'(f,z) = \frac{\partial}{\partial y}U(f,x,y) + i\frac{\partial}{\partial y}\tilde{U}(f,x,y),$$

$$i^2\Phi''(f,z) = \frac{\partial^2}{\partial y^2}U(f,x,y) + i\frac{\partial^2}{\partial y^2}\tilde{U}(f,x,y).$$

Proof. Both equalities can be obtained by direct calculation starting with (3.1) and taking into account that

$$\Phi'(f,z) = \frac{1}{i\pi} \int_{-\infty}^{\infty} \frac{f(t)}{(t-z)^2} dt,$$

$$\Phi''(f,z) = \frac{2}{i\pi} \int_{-\infty}^{\infty} \frac{f(t)}{(t-z)^3} dt.$$

LEMMA 2 (see, e.g., [3, p. 569]). Let $f \in L^p$ for some $1 , and let <math>0 \le b < 1$, $0 \le a := b + p - 2$. If $|f(t)|^p |t|^a \in L^1$, then \hat{f}_c exists in the sense of an ordinary function and

$$\int_{-\infty}^{\infty} \left| \hat{f}_c(u) \right|^p |u|^{-b} du \le C_{b,p} \int_{-\infty}^{\infty} \left| f(t) \right|^p |t|^a dt.$$

An analogous conclusion holds if \hat{f}_c is replaced by \hat{f}_s .

This inequality is known as Pitt's inequality. The special case where a := 0, b := 2 - p, and 1 is known as the Hardy-Littlewood inequality.

The next lemma is an extension of the famous inequality of M. Riesz from a single function to a sequence of functions.

LEMMA 3 (see, e.g., [3, p. 491]). Let $\{f_j(t): j = 0, 1, ...\}$ be a sequence of functions belonging to L^{λ} for some $1 < \lambda < \infty$ and let 1 . Then

$$\left\| \left(\sum_{j=0}^{\infty} \left| \tilde{f_j}(t) \right|^p \right)^{1/p} \right\|_{\lambda} \le C_{p,\lambda} \left\| \left(\sum_{j=0}^{\infty} \left| f_j(t) \right|^p \right)^{1/p} \right\|_{\lambda}. \tag{3.3}$$

Here and in the sequel, we adopt the notation

$$||f||_{\lambda} := \left\{ \int_{-\infty}^{\infty} |f(t)|^{\lambda} dt \right\}^{1/\lambda}.$$

We note that the particular case where p=2 and $1 < \lambda < \infty$ is an immediate consequence of a theorem of Marcinkiewicz and Zygmund (see, e.g., [3, p. 484]). Their reasoning can be slightly improved by interpolating with the obvious case: $1 < \lambda = p < \infty$. The general case stated in Lemma 3 is due to Boas and Bochner [1].

The next lemma is an extension of Lemma 3 from the discrete case to the continuous one.

LEMMA 4. Let $\{f_{\nu}(t): \nu > 0\}$ be a collection of functions belonging to L^{λ} for some $1 < \lambda < \infty$ and let $1 . Furthermore, assume that, for almost all <math>t \in \mathbf{R}$, both $f_{\nu}(t)$ and $\tilde{f}_{\nu}(t)$ are continuous functions with respect to ν on the interval $(0,\infty)$. Then

$$\left\| \left\{ \int_0^\infty \left| \tilde{f}_{\nu}(t) \right|^p d\nu \right\}^{1/p} \right\|_{\lambda} \le C_{p,\lambda} \left\| \left\{ \int_0^\infty \left| f_{\nu}(t) \right|^p d\nu \right\}^{1/p} \right\|_{\lambda}. \tag{3.4}$$

We conjecture that inequality (3.4) holds without the assumption of the continuity of $f_{\nu}(t)$ and $\tilde{f}_{\nu}(t)$ in ν . However, we will apply Lemma 4 in the case when $f_{\nu}(t) := \nu^{\alpha - (1/p)} \{ s_{\nu}(f,t) - \sigma_{\nu}(f,t) \}$ (see (1.3) and (1.4)). Clearly, $f_{\nu}(t)$ is continuous, even analytic in ν for all $t \in \mathbf{R}$. The same is true for $\tilde{f}_{\nu}(t)$ (see (1.5), (1.6), and (1.17)), provided 1 , which is the case in our Theorem 2.

Proof. Clearly, it is enough to deal with the case where

$$K := \left\| \left\{ \int_0^\infty \left| f_{\nu}(t) \right|^p d\nu \right\}^{1/p} \right\|_{A} < \infty. \tag{3.5}$$

Then for almost all $t \in \mathbf{R}$ we have

$$\int_0^\infty \big|f_\nu(t)\big|^p\,d\nu < \infty.$$

Fix such $t \in \mathbf{R}$ with the additional property that both $f_{\nu}(t)$ and $\tilde{f}_{\nu}(t)$ are continuous with respect to ν on $(0, \infty)$.

Choose $0 < \varepsilon < A < \infty$ and consider a sequence of partitions

$$\varepsilon := t_0^k < t_1^k < \cdots < t_k^k =: A, \qquad k = 1, 2, \ldots,$$

such that

$$\max_{1 \le i \le k} \left(t_j^k - t_{j-1}^k \right) \to 0 \quad \text{as } k \to \infty.$$

Then the expressions involving Riemann sums

$$F_k(t) := \left\{ \sum_{j=1}^k \left| f_{\nu_j^k}(t) \right|^p \left(t_{j,-}^k - t_{j-1}^k \right) \right\}^{1/p}$$

and

$$G_k(t) := \left\{ \sum_{j=1}^k \left| \tilde{f}_{\nu_j^k}(t) \right|^p \left(t_j^k - t_{j-1}^k \right) \right\}^{1/p},$$

where $t_{j-1}^k \le \nu_j^k \le t_j^k$ for all j and k, converge to the corresponding Riemann integrals

$$F(t) := \left\{ \int_{\varepsilon}^{A} \left| f_{\nu}(t) \right|^{p} d\nu \right\}^{1/p} \quad \text{and} \quad G(t) := \left\{ \int_{\varepsilon}^{A} \left| \tilde{f}_{\nu}(t) \right|^{p} d\nu \right\}^{1/p},$$

respectively, as $k \to \infty$. This is true for almost all $t \in \mathbb{R}$. By Lemma 3 and (3.5),

$$||G_k(t)||_{\lambda} \leq C_{n,\lambda}||F_k(t)||_{\lambda} \leq C_{n,\lambda}K.$$

By Fatou's lemma,

$$\|G(t)\|_{\lambda} := \left\| \left\{ \int_{\epsilon}^{A} \left| \tilde{f}_{\nu}(t) \right|^{p} d\nu \right\}^{1/p} \right\|_{\lambda} \leq C_{p,\lambda} K.$$

Letting $\varepsilon \to 0$ and $A \to \infty$, hence we conclude that

$$\left\| \left\{ \int_0^\infty \left| \tilde{f}_{\nu}(t) \right|^p d\nu \right\}^{1/p} \right\|_{\lambda} \le C_{p,\lambda} K. \tag{3.6}$$

Now, (3.4) follows from (3.5) and (3.6).

The equivalence statements formulated in Lemmas 5 and 7 below are due to Triebel [7]. Actually, we need their particular form corresponding to the case where

$$\varphi(t) := e^{it} - e^{-it}, \qquad \varphi_i(t) := \varphi(2^{-it}), \qquad j = 0, 1, \ldots,$$

and accordingly,

$$\varphi(uD)f(t) \coloneqq f(t+u) - f(t-u).$$

(These notations are taken from [7].)

LEMMA 5 (see [7, pp. 100–101]). Let $f \in L^{\lambda}$ for some $0 < \lambda < \infty$ and let $0 , <math>\alpha \in \mathbb{R}$. Then (2.4) is satisfied if and only if

$$\left\| \left(\sum_{j=0}^{\infty} \left| 2^{\alpha j} \left\{ f(t+2^{-j}) - f(t-2^{-j}) \right\} \right|^{p} \right)^{1/p} \right\|_{A} < \infty.$$
 (3.7)

We note that the Lizorkin-Triebel space $F_{\lambda, p}^{\alpha}$ is defined by (3.7). By Lemma 5, an equivalent norm in $F_{\lambda, p}^{\alpha}$ is defined by (2.4). Let

$$I_*(f,t) := \left\{ \int_0^\infty \left| \frac{\Phi(f,t+u) - \Phi(f,t-u)}{u^\alpha} \right|^p \frac{du}{u} \right\}^{1/p}, \qquad t \in \mathbf{R}.$$

Combining the obvious inequalities

$$\max\{I(f,t),I(\tilde{f},t)\} \le I_*(f,t) \le I(f,t) + I(\tilde{f},t)$$

with Lemmas 3 and 5 yields

Lemma 6. Let $f \in L^{\lambda}$ for some $1 < \lambda < \infty$ and let $1 , <math>\alpha \in \mathbb{R}$. Then

$$I(f) \in L^{\lambda} \Leftrightarrow I(\tilde{f}) \in L^{\lambda} \Leftrightarrow I_*(f) \in L^{\lambda}$$
.

Following the pattern of $g_{2*}(f)$, let

$$g_2(f,t) := \left\{ \int_0^\infty \left| y^{2-\alpha} \frac{\partial^2}{\partial y^2} U(f,x,y) \right|^p \frac{dy}{y} \right\}^{1/p}, \qquad t \in \mathbf{R}.$$

Then

$$g_2(\tilde{f},t) := \left\{ \int_0^\infty \left| y^{2-\alpha} \frac{\partial^2}{\partial y^2} \tilde{U}(f,x,y) \right|^p \frac{dy}{y} \right\}^{1/p}$$

(cf. (3.2)).

LEMMA 7 (see [7, pp. 151–152]). Let $f \in L^{\lambda}$ for some $0 < \lambda < \infty$ and let $0 , <math>-\infty < \alpha < 2 - (1/\min(\lambda, p))$. Then

$$I(f) \in L^{\lambda} \Leftrightarrow g_{\gamma}(f) \in L^{\lambda}$$
.

Combining the obvious inequalities

$$\max\{g_2(f,t),g_2(\tilde{f},t)\} \le g_{2*}(f,t) \le g_2(f,t) + g_2(\tilde{f},t)$$

with Lemmas 6 and 7 vields

LEMMA 8. Let $f \in L^{\lambda}$ for some $1 < \lambda < \infty$ and let 1 . Then

$$g_2(f) \in L^{\lambda} \Leftrightarrow g_2(\tilde{f}) \in L^{\lambda} \Leftrightarrow g_{2*}(f) \in L^{\lambda}$$
.

Following the pattern of $\gamma_*(f)$, let

$$\gamma(f,t) := \left\{ \int_0^\infty \left| \nu^{\alpha} \left\{ s_{\nu}(f,t) - \sigma_{\nu}(f,t) \right\} \right|^p \frac{d\nu}{\nu} \right\}^{1/p}, \qquad t \in \mathbf{R}.$$

Then

$$\gamma(\tilde{f},t) = \left\{ \int_0^\infty \left| \nu^{\alpha} \left\{ \tilde{s}_{\nu}(f,t) - \tilde{\sigma}_{\nu}(f,t) \right\} \right|^p \frac{d\nu}{\nu} \right\}^{1/p}$$

(cf. (2.1)). As a consequence of Lemma 4, we obtain the following

LEMMA 9. Let $f \in L^{\lambda}$ for some $1 < \lambda < \infty$ and let $1 , <math>\alpha \in \mathbb{R}$. Then

$$\gamma(f) \in L^{\lambda} \Leftrightarrow \gamma(\tilde{f}) \in L^{\lambda} \Leftrightarrow \gamma_*(f) \in L^{\lambda}.$$

So far, we have defined the functions $\gamma(f)$, $\gamma_*(f)$, $\gamma_!(f)$, $g_2(f)$, and $g_{2*}(f)$. In Sections 4 and 5, we will define $\gamma_2(f)$, $g_{1*}(f)$, and $g_1(f)$. All these are called Littlewood-Paley functions (cf. [8, Vol. 2, Chaps. 14, 15]).

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. Part 1. By (1.3)-(1.6),

$$\tau_{\nu}(f,t) + i\tilde{\tau}_{\nu}(f,t) = \frac{1}{\nu} \int_{0}^{\nu} u \{\hat{f}_{c}(u) - i\hat{f}_{s}(u)\} e^{itu} du,$$

whence

$$\int_{0}^{\infty} \nu \{ \tau_{\nu}(f,t) + i\tilde{\tau}_{\nu}(f,t) \} e^{iz\nu} d\nu$$

$$= \frac{1}{z} \int_{0}^{\infty} iu e^{i(t+z)u} \{ \hat{f}_{c}(u) - i\hat{f}_{s}(u) \} du$$

$$= \frac{\Phi'(f,t+z)}{z}, \qquad z := x + iy, \ y > 0, \ t \in \mathbf{R}. \tag{4.1}$$

By Hölder's inequality,

$$\begin{split} \left| \frac{\Phi'(f,t+x+iy)}{x+iy} \right|^p &\leq \int_0^\infty \left| \nu^\alpha \left\{ \tau_\nu(f,t) + i\tilde{\tau}_\nu(f,t) \right\} \right|^p e^{-\nu y} d\nu \\ &\qquad \times \left\{ \int_0^\infty \nu^{(1-\alpha)q} e^{-\nu y} d\nu \right\}^{p-1} \\ &= \frac{C_{\alpha,p}}{v^{2p-1-\alpha p}} \int_0^\infty \left| \nu^\alpha \left\{ \tau_\nu(f,t) + i\tilde{\tau}_\nu(f,t) \right\} \right|^p e^{-\nu y} d\nu, \end{split}$$

where

$$C_{\alpha,p} := (\Gamma((1-\alpha)q+1))^{p-1}, \qquad \frac{1}{p} + \frac{1}{q} = 1,$$

and Γ is the common gamma function. Hence

$$\int_0^\infty y^{2p-1-\alpha p} \left| \frac{\Phi'(f,t+x+iy)}{x+iy} \right|^p dy$$

$$\leq C_{\alpha,p} \int_0^\infty \left| \nu^{\alpha} \left\{ \tau_{\nu}(f,t) + i \tilde{\tau}_{\nu}(f,t) \right\} \right|^p d\nu \int_0^\infty e^{-\nu y} dy$$

$$= C_{\alpha,p} \gamma_*^p(f,t), \qquad t \in \mathbf{R}.$$

Setting x := 0 yields

$$g_{1*}(f,t) := \left\{ \int_0^\infty \left| y^{1-\alpha} \Phi'(f,t+iy) \right|^p \frac{dy}{y} \right\}^{1/p}$$

$$\leq C_{\alpha,p}^{1/p} \gamma_*(f,t), \qquad t \in \mathbf{R}. \tag{4.2}$$

Part 2. Taking the derivatives of both sides in (4.1) with respect to z, we get

$$i\int_{0}^{\infty} \nu^{2} \{ \tau_{\nu}(f,x) + i\tilde{\tau}_{\nu}(f,x) \} e^{iz\nu} d\nu$$

$$= \frac{\Phi''(f,t+z)}{z} - \frac{\Phi'(f,t+z)}{z^{2}}, \qquad z := x + iy, y > 0, t \in \mathbb{R}.$$
(4.3)

By Hölder's inequality,

$$\begin{split} &\left|\frac{\Phi''(f,t+z)}{z} - \frac{\Phi'(f,t+z)}{z^2}\right|^p \\ &\leq \left\{\int_0^\infty \nu^2 |\tau_\nu(f,t) + i\tilde{\tau}_\nu(f,t)| e^{-\nu y} d\nu\right\}^p \\ &\leq \int_0^\infty &\left|\nu^\alpha \{\tau_\nu(f,t) + i\tilde{\tau}_\nu(f,t)\}\right|^p e^{-\nu y} d\nu \left\{\int_0^\infty \nu^{(2-\alpha)q} e^{-\nu y} d\nu\right\}^{p-1} \\ &= \frac{C_{\alpha,p}}{\nu^{3p-1-\alpha p}} \int_0^\infty &\left|\nu^\alpha \{\tau_\nu(f,t) + i\tilde{\tau}_\nu(f,t)\}\right|^p e^{-\nu y} d\nu, \end{split}$$

where this time

$$C_{\alpha,p} := (\Gamma((2-\alpha)q+1))^{p-1}, \qquad \frac{1}{p} + \frac{1}{q} = 1.$$

Hence

$$\int_0^\infty y^{3p-1-\alpha p} \left| \frac{\Phi''(f,t+z)}{z} - \frac{\Phi'(f,t+z)}{z^2} \right|^p dy \le C_{\alpha,p} \gamma_*^p(f,t).$$

Setting x := 0 and making use of Minkowski's inequality yields

$$g_{2*}(f,t) \le C_{\alpha,p}^{1/p} \gamma_*(f,t) + g_{1*}(f,t), \quad t \in \mathbf{R}$$

Taking into account (4.2), we conclude (2.2).

Proof of Theorem 2. Necessity. Assume (2.3). By Minkowski's inequality,

$$\gamma(f,t) \le \gamma_1(f,t) + \gamma_2(f,t), \tag{4.4}$$

where

$$\gamma_2(f,t) := \left\{ \int_0^\infty \left| \nu^{\alpha} \left\{ \sigma_{\nu}(f,t) - f(t) \right\} \right|^p \frac{d\nu}{\nu} \right\}^{1/p}, \qquad t \in \mathbf{R}.$$

By (1.11) and [4, Lemma 5], we get

$$\gamma_{2}(f,t) = \left\{ \int_{0}^{\infty} \left| \nu^{\alpha-1} \int_{0}^{\nu} \left\{ s_{\mu}(f,t) - f(t) \right\} d\mu \right|^{p} \frac{d\nu}{\nu} \right\}^{1/p} \\ \leq (1-\alpha)^{-1} \gamma_{1}(f,t). \tag{4.5}$$

Combining (2.3), (4.4), and (4.5) yields $\gamma(f) \in L^{\lambda}$. By Lemma 9, we have $\gamma_*(f) \in L^{\lambda}$. Applying Theorem 1 and Lemmas 8 and 7, we conclude (2.4). Sufficiency. Assume (2.4). By (1.8) and (1.14), we have

$$\tilde{s}_{\nu}(f,t) - \tilde{f}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(t+u) - f(t-u)}{u} \cos \nu u \, du,$$

provided $\tilde{f}(t)$ exists, where $\int_{-\infty}^{\infty} := \lim_{\epsilon \downarrow 0} \int_{\epsilon}^{\infty}$. Applying Lemma 2 with $b := 1 - \alpha p \ge 0$ and $a := p(1 - \alpha) - 1 \ge 0$, we obtain

$$\gamma_{1}(\tilde{f},t) = \frac{1}{\pi} \left\{ \int_{0}^{\infty} \nu^{\alpha p - 1} \left| \int_{-0}^{\infty} \frac{f(t+u) - f(t-u)}{u} \cos \nu u \, du \right|^{p} \, d\nu \right\}^{1/p}$$

$$\leq C_{\alpha,p}^{1/p} \left\{ \int_{0}^{\infty} \left| \frac{f(t+u) - f(t-u)}{u} \right|^{p} u^{p(1-\alpha)-1} \, du \right\}^{1/p}$$

$$= C_{\alpha,p}^{1/p} I(f,t) \tag{4.6}$$

for all $t \in \mathbf{R}$. The symmetric counterpart of (4.6) says that we have

$$\gamma_1(f,t) \le C_{\alpha,p}^{1/p} I(\tilde{f},t) \tag{4.7}$$

also for all $t \in \mathbb{R}$. It remains to apply Lemma 6 in order to conclude (2.3).

5. CONCLUDING REMARKS

Remark 3. As a by-product, we obtain that in Theorem 1 we actually have the equivalence relation

$$\gamma_*(f) \in L^{\lambda} \Leftrightarrow g_{2*}(f) \in L^{\lambda}$$

provided $1 , <math>1 < \lambda < \infty$, and $0 < \alpha \le \min(1/p, 1/q)$.

Indeed, it is enough to check the implication \Leftarrow . Assume $g_{2*}(f) \in L^{\lambda}$. By Lemmas 8 and 7, $I(f) \in L^{\lambda}$. By Theorem 2, $\gamma_1(f) \in L^{\lambda}$. By (4.4) and (4.5) in the proof of the Necessity in Theorem 2, we have $\gamma(f) \in L^{\lambda}$. Finally, by Lemma 9, we find the desired relation $\gamma_*(f) \in L^{\lambda}$.

Remark 4. Analogously, one can establish the equivalence relation

$$\gamma_*(f) \in L^{\lambda} \Leftrightarrow g_{1*}(f) \in L^{\lambda}$$

for specified values of p, λ , and α . The corresponding reasoning should involve the function

$$g_1(f,t) := \left\{ \int_0^\infty \left| y^{1-\alpha} \frac{\partial}{\partial y} U(f,x,y) \right|^p \frac{dy}{y} \right\}^{1/p}, \quad t \in \mathbf{R}.$$

Remark 5. The machinery elaborated in this paper is also appropriate to characterize the saturation class concerning the strong approximation of order p of a periodic function $f \in L^1_{2\pi} := L^1(-\pi, \pi)$ by the partial sums $s_n(f,t)$ of its Fourier series in $L^\lambda_{2\pi}$ -norm, where $2 \le p < \infty$ and $1 < \lambda < \infty$. A slight difference arises by the fact that $L^1_{2\pi} \supset L'_{2\pi}$ for all r > 1, while $L^1(\mathbf{R})$ and $L'(\mathbf{R})$ are incomparable.

THEOREM 3. Let $f \in L^1_{2\pi}$, $1 , <math>1 < \lambda < \infty$, and $0 < \alpha \le \min(1/p, 1/q)$, where 1/p + 1/q = 1. Then

$$\int_{-\pi}^{\pi} \left(\sum_{n=1}^{\infty} n^{\alpha \rho - 1} |s_n(f, t) - f(t)|^p \right)^{\lambda/p} dt < \infty$$
 (5.1)

if and only if

$$\int_{-\pi}^{\pi} \left\{ \int_{0}^{\pi} \left| \frac{f(t+u) - f(t-u)}{u^{\alpha}} \right|^{p} \frac{du}{u} \right\}^{\lambda/p} dt < \infty.$$
 (5.2)

The *n*th strong approximation of order p of f by the partial sums $s_k(f, t)$ of its Fourier series is defined by

$$\mathscr{A}_{n}^{p}(f,t) := \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left| s_{k}(f,t) - f(t) \right|^{p} \right\}^{1/p}.$$

According to Theorem 3, the saturation class in L^{λ} -norm is the (periodic) Lizorkin-Triebel space $F^{\alpha}_{\lambda,p}$ on the torus, where $\alpha = 1/p$, $2 \le p < \infty$, and $1 < \lambda < \infty$.

The equivalence relation $(5.1) \Leftrightarrow (5.2)$ was proved by Sunouchi [5] for $1 and <math>\alpha = 1/p$. His proof hinges upon a lemma which is implicitly included in [2] by Flett. Unfortunately, there are two errors in [2]: see (4.11) and Theorem 11 on p. 368 as well as Theorem 20 on p. 374 (cf. what is said on p. 378).

REFERENCES

- R. P. Boas and S. Bochner, On a theorem of M. Riesz for Fourier series, J. London Math. Soc. 14 (1939), 62-73.
- T. M. FLETT, Some more theorems concerning the absolute summability of Fourier series and power series, *Proc. London Math. Soc.* 8 (1958), 357–389.
- 3. J. García-Cuerva and J. L. Rubio de Francia, "Weighted Norm Inequalities and Related Topics," North-Holland, Amsterdam/New York/Oxford, 1985.
- 4. DANG VU GIANG AND F. MÓRICZ, A characterization of Besov spaces on the real line, J. Math. Anal. Appl., in press.
- 5. G. Sunouchi, On the class of saturation in strong approximation, *Math. Japon.* 37 (1992), 601-606.
- E. C. TITCHMARSH, "Introduction to the Theory of Fourier Integrals," Clarendon Press, Oxford, 1937.
- 7. H. TRIEBEL, "Theory of Function Spaces, II," Birkhäuser, Basel/Boston/Berlin, 1992.
- 8. A. ZYGMUND, "Trigonometric Series," Cambridge Univ. Press, Cambridge, 1959.