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Let f be a real valued function which belongs to L":= L'(—, x) for some
1 <r <. We consider the cosine transform fc, sine transform f,. {complex)
Fourier transform f and Hilbert transform f of f. We study the strong approxi-
mation of order p, 0 < p < =, of f and f by their Dirichlet integrals, respectively.
We prove that the saturation class in L'-norm is the Lizorkin—Triebel space £ »
where @ = 1/p, 2 <p <o, and 1 <X < =, To this effect, we introduce several
so-called Littlewood~Paley functions and make use of a number of equivalence
theorems. Our machinery is also appropriate to characterize the saturation class
concerning the strong approximation of order p of a periodic function f € LlZ'n =
L'(—, 1) by the partial sums of its Fourier series in L% _-norm, where again
2<p<wandl <A <®  ©1994 Academic Press, Inc.

1. PRELIMINARIES

We recall the basic notions in the theory of Fourier transforms (see,
e.g., [6, Chaps. 1-5]). Let f be a real valued, Lebesgue integrable function
on the real line, in sign: f € L' := L'(R), R := (—~x, ). Let

Fi(u) = —[ f(r)cos utdr (1.1)

be the cosine transform and

. 1 =
flu)y == [ f()sinurds, ueR, (1.2)
T —x
the sine transform of f.
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272 GIANG AND MORICZ

These definitions make sense also in the case when f e L" := L'(R) for
some 1 < r < 2, since the integrals on the right-hand sides of (1.1) and
(1.2) converge in L"-norm, where I/r + 1/r' = 1. In other words, the
integral [*_ is meant as the limit in L”-norm of [T as T\, T, » = We
note that in the case where f& L” for some 2 <r < o, then f and f
exist only in the sense of a tempered distribution, and they are not

functions in general.
The Dirichlet integral of a function f € L' is defined by

s, (f.t) = /V{fi(u)cos w + f.(u)sin tu} du, (1.3)
0
the conjugate Dirichlet integral by
5,0f.10) = [ {fiu)sin au — f(u)cos w) du, (1.4)
0
the Riesz mean (of first order) by
u
o.(f, 1) :-[ (1 —~ —){f(u)cos tu + f(u)sin tu)du,  (1.5)

and the conjugate Riesz mean (of first order) by

a(f,t) :=f (1 - E){f(u)sm t — f(u)cos tu}d v>0,r€R.

(1.6)
From (1.1)—(1.6) it follows immediately that
1 sin vu
s,(fot) :—[ fle=w du, (1.7)
1 — cosvu
5.1, =—f = w)————du, (1.8)
which justify the use of the term “Dirichlet integral,” and

1 = 1 — cosvu

o (fit) = = [ flt —u)——g—du, (1.9)
Ty —w vu
B | Q) 1 sin vu 4 L10
) = — t — - - . .

TRy R < PO R

From now on, it suffices to assume that f& L” for some | <r <,
since the integrals on the right-hand sides of (1.7)—(1.10) exist in the



STRONG APPROXIMATION IN L*(R)-NORM 273

Lebesgue sense, due to Hoélder’s inequality. Thus, we will use (1.7)-(1.10)
in the capacity of the definitions of s,(f), §.(f), o(f), and &.(f) for
functions f belonging to L™ for some 1 < r < o, Furthermore, we have

1 14
o(f.1) = 5 [ s f.0) du, (1.11)

J
Gf) = - [0 dr, (1.12)

which explain that o,(f) and 4,(f) are also called the “Cesaro means”
of f.

Let z:=x + iy be a complex number with y > 0. As is known, the
Cauchy transform of f is defined by

&(f,z) = f:{f;(u) — if(u))e'™ du. (1.13)

It is plain that @(f, z) as a function of the complex variable z is analytic
on the upper half plane.

We remind the reader that the Hilbert transform f of a function f € L
for some 1 < r < « is defined by

. 1 = f(u) b= f(t+u) — f(t-u)
f(e) = ;f_m[_udu= - lim— f - du. (1.14)
This integral as well as the limit
P(f,0) = NmP(f.0 + ) = (1) +if(1) (1.15)

exists and we have

(f) (1) = (1) (1.16)

for almost all ¢ € R By a famous theorem of M. Riesz, if f € L for some
1 <r<w,then f € L and

5,(f.t) =s.(f.1), t€R (1.17)
Remark 1. We note that we could equally use complex notations.
Namely, the (complex) Fourier transform of a function f € L' is defined

by

\ 1 = _
Fflu) = E;f_mf(t)e‘”" dt, uecR.
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By (1.1) and (1.2), we have

- 1. A
f(uy = 3 {fulw) = i),

Assume that f & L' for some 1 < r < «. Then the Dirichlet integrals and
Riesz means of f can be expressed as

s(fot) = [ e au,

5.0f,0) = [ (~isignu)f(u)e™ du,
lu

o,(f1) =[ (1 - m)f(u)e““du

lul . . ,
a(f, t)—f (1——V—)(—zmgnu)f(u)e“"du, v>0,t€ER,

where the left-hand sides are defined by (1.7)-(1.10), respectively.

2. MaiN REsULTS

Let fe L’ for some 1 £ r < = and define

m(f,0) =s.(f.t) —a(f.t),
F(f.t) =5,(f.t) =, (f, 1), vr>0,r€R.
By (1.11), (1.12), and (1.17), we have

i(f0) = 7,(f. 1) (2.1)
Furthermore, let « € R and define

1/p
v (fo0) {f ve{n( 1) + i, 0)] —},

= pdy '
824 (f, 1) = {fo |y2 @ (f, 1+ iy)] %} .

THEOREM 1. Let f€ L’ for some 1 <r <o, and let 1 <p < o,
~o < a < 1. Then

g2x(f1) < C, y«(f,t), tE€R (22)
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Here and in the sequel, by C (endowed with certain subscripts) we
denote positive constants (depending only on the subscripts indicated)
whose value may be different at different occurrences.

Let 1 < p < « and define g by 1/p + 1 /g = 1. The main result of this
paper reads as follows.

THEOREM 2. Letfe L? N L* forsome 1 <p <o, 1 <A <, and let
0 <a <min(1/p,1/q). Then

» ,,dv I/p
N(for) = {/olv"{sy(f,t)—f(t)}l 7} €Lt (23)

if and only if

I(f,1) = {f:

Assume fe L for some 1 <r <= and 0 <p < . We define the
strong approximation of order p of f by its Dirichlet integral as

1/p

’du
——} € L, (2.4)

u

fe+u) —f(t—u)

u

1 T p I/p
sps = {3 [ls0 -sol @) To0ner

By Holder’s inequality,
FE(f. 1) < FE(f, 1) if 0<p<p <= (2.5)

It is easy to find the saturation order in L*-norm, where 0 < A < .
Indeed, if

(r [y,e(f,,)pd,}'“=0(T-w) s Toro

then we necessarily have

f:lsv(f,t) — () dv=0

for almost all + € R. Fix such ¢, then s,(f,t) = f(¢) for all v > 0. Conse-
quently, f(¢) = 0 for almost all + € R. In other words, the saturation
order is #(T7'/?),
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Now, Theorem 2 makes it possible to determine the saturation class in
L*-norm, where 2 < p < w and 1 < A < . Namely, if

{ff [#(f, 0] d'}w =@(T7V7)  asT - =,

then we necessarily have

AL

This coincides with (2.3) in the particular case where a = 1/p. By virtue
of Theorem 2, relation (2.6) is equivalent to (2.4) for a = 1/p, 2 < p < =,
I < A <o, which in turn is equivalent to the fact that fe& FA‘fp, the
so-called Lizorkin-Triebel space (see the remark made after Lemma 5

below).

A/p
s,(f. 1) = f(0)|° dV} dt < . (2.6)

Remark 2. The symmetric counterpart of Theorem 2 says that

- x - pdv Lr
vl(f»f)={f0’V“{fu(f»t)—f(t)}\ —;} Lt (27

(cf. (1.17)) if and only if

I(fr) = { [

By virtue of Lemma 6, conditions (2.4) and (2.8) are equivalent. Hence,

conditions (2.3) and (2.7) are also equivalent. In particular, this solves the

problem of the strong approximation in L*-norm of the Hilbert transform
f by the conjugate Dirichlet integral, too.

l/p

Ft + ) = f(1 — ) }EU -

(21

[4
du

U

u

3. AuxiLIARY REsSULTS

Let z :==x + iy with y > 0. By (1.1), (1.2), and (1.13),

&(f,z) = ljm £(1) dt [ et du
T~ 0
1A

imT —olt — 2

U(f. x,y) +iU(f,x,y), (3.1)
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where

U(f,x,y) = —[ SO

() +y
1s the Poisson integral and
- -1
Uqur=—/f(r——;:—¢t
is the conjugate Poisson integral of f. Similarly to (1.17) and (2.1), we have

U(f.x,y) =U(f %) (3.2)

Lemma 1. Let fe L for some 1 <r <« and let z == x + iy with
y > 0. Then

é d .
i(p’(f’z)=5—;U(f’xvy)+iEU(fsxay)a
a? #?

P2O(f,z) = 5;2—U(f,x,y) + ib-;—ZU(f,x,y).

Proof. Both equalities can be obtained by direct calculation starting
with (3.1) and taking into account that

c,zs'(f,z)=_i x——&t—)—zdt,
Im/ox(t —2)
<1>"(f,z)=,~2~ A

Imd_=(t —2)3

Lemma 2 (see, e.g., [3, p. 569)). Let f € L” for some 1 <p < », and
let 0 <b<1,0<a=b+p—2 If If(OIPIt|° € L', then f. exists in the
sense of an ordinary function and

[ ™ du s ¢, [~ 150100 ar.

An analogous conclusion holds if f. is replaced by f..

This inequality is known as Pitt’s inequality. The special case where
a=0, b=2-p, and 1 <p <2 is known as the Hardy-Littlewood
inequality.
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The next lemma is an extension of the famous inequality of M. Riesz
from a single function to a sequence of functions.

LemMa 3 (see, e.g., [3, p. 491]). Let {f(t): j =0,1,...) be a sequence
of functions belonging to L* for some 1 < A < % and let 1 < p < . Then

(3.3)

<C,a

( Y If,»(t)!p)l/p

j=0

[Zlior)”

j=0

A A

Here and in the sequel, we adopt the notation

Il = {fllf(t)r‘ dt}m.

We note that the particular case where p =2 and 1 <A <o is an
immediate consequence of a theorem of Marcinkiewicz and Zygmund
(see, e.g., [3, p. 484)]). Their reasoning can be slightly improved by interpo-
lating with the obvious case: 1 < A = p < », The general case stated in
Lemma 3 is due to Boas and Bochner [1].

The next lemma is an extension of Lemma 3 from the discrete case to
the continuous one.

Lemma 4. Let {f,(1): v > 0) be a collection of functions belonging to L*
for some 1 <X <o and let 1 <p <. Furthermore, assume that, for
almost all t € R, both f,(t) and f,(t) are continuous functions with respect
to v on the interval (0, «<). Then

i

We conjecture that inequality (3.4) holds without the assumption of the
continuity of f,(¢) and f,(¢) in v. However, we will apply Lemma 4 in the
case when f,(¢t) == v*= VP (f, 1) — a,(f, t)} (see (1.3) and (1.4)). Clearly,
f,(¢) is continuous, even analytic in v for all + € R. The same is true for
ﬁ,(t) (see (1.5), (1.6), and (1.17)), provided 1 < p < o, which is the case in
our Theorem 2.

(3.4)

f‘,(r)l”dv}w {f(flfu(t)l”dv}l/p A

<C,,
A

Proof. Clearly, it is enough to deal with the case where

< o, (3.5)

A

K= ”{f(flfu(t)l” dv}w
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Then for almost all + € R we have

[xlfv(t)[" dv < o,
0

Fix such + € R with the additional property that both f,(¢) and f,(¢) are
continuous with respect to v on (0, «).
Choose 0 < ¢ < A < = and consider a sequence of partitions
e=tl<th< - <tf=4, k=12,...,

such that

max (t" — ¢k

f ]_1)-—>0 as k — oo,
l<j<k

Then the expressions involving Riemann sums

k 1/p
P
RO = | E ol (- 12.)
j=1
and
k L/p
G (t) = {E k—l)} ’
j=1
where tJ | < ij < t}‘ for all j and k, converge to the corresponding

Riemann integrals

1/p

Foy = { [0 do} T and G(r)=={€"ﬁ(r)|"dv}l/p,

respectively, as k — . This is true for almost all t € R.
By Lemma 3 and (3.5),

G\ = Cp,Alle(t)“A <G K.

By Fatou’s lemma,

<C,.K.

ol )]

lG(t)“A '=\
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Letting ¢ — 0 and A4 — %, hence we conclude that

I

Now, (3.4) follows from (3.5) and (3.6).

<C,,K (3.6)

poA

f](r)l”dv}w A

The equivalence statements formulated in Lemmas 5 and 7 below are
due to Triebel [7). Actually, we need their particular form corresponding
to the case where

o(t) =€ —e ", @, (1) = @(27'1), i=0,1,...,
and accordingly,
e(uD) f(r) = f(t +u) = f(t —u).

(These notations are taken from [7].)

LemMma 5 (see [7, pp. 100-101]). Ler f € L* for some 0 < A < = and
let 0 <p <o, @ € R Then (2.4) is satisfied if and only if

< o, (3.7)

A

< L/p
( X 2w{f(e +27) = f(r - 2")}1")

=0

We note that the Lizorkin-Triebel space F;*, is defined by (3.7). By
Lemma 5, an equivalent norm in Fy , is defined by 2.4).
Let

L(f.1) = {f:

Combining the obvious inequalities

D(f,t+u) —D(f,t —u

(43

u

I i/p
du
— s t € R.
u

max{I(f,t), I(f.0)} < L.(f.1) <I(f.0) + I(f.1)

with Lemmas 3 and 5 yields

LEmMma 6. Let f e L* forsome 1 <A <xandlet 1 <p <=, a € R.
Then

I(fyel*=I(f)yel*=1,(f) el
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Following the pattern of g, ,(f), let

t/p

* 2—-a 32 pdy
gAf, 1) = f(-) ¥y gy—zU(f,X,}’) gl t €R.
Then
_ - (92 ) pdy \/p
, ) = \2-a 7l] , X,y —
ssf) = | [ Tt 7
(cf. (3.2)).

Lemma 7 (see [7, pp. 151-152]). Let f € L* for some 0 < XA < » and
let 0 <p <o —x<a<2-(1/min(A, p)). Then

I(f) € L* = gy(f) € L*,
Combining the obvious inequalities
max{g,(f.1), &:(F. 1)} < &4 (f:1) <&(f.1) + & fo1)

with Lemmas 6 and 7 yields

Lemma 8. Letf€ L* forsome 1 <A <xandlet 1 <p < », —% <a
< 2 — (1/min(A, p)). Then

gAf) ELr o gy(f) el & g, (f) €L

Following the pattern of y,(f), let
x »dv U/p
y(fo1) = {f (s £.) = o (£, D) —} . teR
0 v
Then

p * pdV p
W) = { [ rn = acro)l')

(cf. (2.1)). As a consequence of Lemma 4, we obtain the following

LEMMA 9. Let f€ L* for some 1 <A < xandlet 1 <p <o, a €R.
Then

Y(f) €L* @ y(f) e L @ v, (f) € L.

640/79/2-9
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So far, we have defined the functions y(f), y,(f), v/(f), g,(f), and
g, +(f). In Sections 4 and 5, we will define y,(f), g,+(f), and g,(f). All
these are called Littlewood—-Paley functions (cf. [8, Vol. 2, Chaps. 14, 15)).
4. Proors OF THEOREMS 1 AND 2
Proof of Theorem 1. Part 1. By (1.3)-(1.6),
n(fot) +if(fi0) = / fulu) = if (u)}e'™ du,

whence

j;)mV{T,,(f, 0) + 5, (f, 1)) du

If

1 = R N
;/(1 iue’(’“’“{f(_(u) - ify(u)}du

D(f,t+2)

=" z=x+1iy,y>0,t R, (4.1)
z

By Hoélder’s inequality,

ve{r,(f 1) +in (f. )} e dv

¢l
e o}
<[
0
X [J"]
X {/ P @ vy dv}
0

a,p

= Ei ﬂp[ v {r.(f. 1) + i, (f.0)} e " dv,

’(D’(f,t+x+iy) g

X+ iy

where

Cop = (I((1-a)g+1))""",

T | -
Q| =

and I' is the common gamma function. Hence

0
[ y2p—l—ap
0

< Cu‘pf [v{r,(f. 1) + if'v(f,t)}[”d,,fo“ew dy

apY*(f t), t R

D(f,t +x+iy) i
x + iy

dy
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Setting x := 0 yields

{I

- pd 1/p
gix(f,1): {fo [y!7e®'(f, 1 +iy)| %}

Co/Py«(f.1), t € R. (4.2)

A

Part 2. Taking the derivatives of both sides in (4.1) with respect to

z, we get

([ (L x) R0 dv
0

'(f,t +2) D(f,t+z) .
= - 5 , z=x+1iy,y>0,te€R.

z F4
(4.3)

By Hoélder’s inequality,
’d>"(f,t+z) Y(f,t+2)

P

z z?

< {fw"zlfu(f’f) + iﬂ(f,t)|e—">'d,,}
0

C P
= W___g;;fo lve{r,(f. 1) +i7,(f, 1)} e dv,

where this time

C (I'((2-a)g +1))""" Y
= - a ’ - PURREE
a,p q D q
Hence

] P(fir+z) F(firrz)|

Setting x := 0 and making use of Minkowski’s inequality yields
g24(fi1) < CByu(fot) +814(fi1), tER

Taking into account (4.2), we conclude (2.2).
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Proof of Theorem 2. Necessity. Assume (2.3). By Minkowski’s inequal-
ity,

y(f.0) <v(fi 1) + vo(fo 1), (4.4)

where
® pdv P
y,(f.t) = {f lve{o,(f. 1) = f(O)}| ——} , t €R.
0 v
By (1.11) and [4, Lemma 5], we get

® Pdp\'*?
vafo1) = {fo 7}

<(1—a) 'y (f.1). (4.5)

vt [{s.(f0) — f(0)) dp

Combining (2.3), (4.4), and (4.5) yields y(f) € L*. By Lemma 9, we have
v.(f) € L*. Applying Theorem 1 and Lemmas 8 and 7, we conclude (2.4).
Sufficiency. Assume (2.4). By (1.8) and (1.14), we have

s(f0) oy = = IO o va,

—{) u

provided f(r) exists, where [* = lim, , /7. Applying Lemma 2 with
bi=1—-—ap=>0and a =p(l —a)—1 = 0, we obtain

1/p
N 1 = o f(t+u) = f(t - u) i
- ap—1
yi(f.t) w{fo v /_'0 - cos vudu| dv
P 1/p
B A G ey
B P u
= CYRI(f.1) (4.6)
for all t € R. The symmetric counterpart of (4.6) says that we have
yi(fi1) < CI(f,t) (4.7)

also for all + € R. It remains to apply Lemma 6 in order to conclude (2.3).
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5. CoNcLUDING REMARKS

Remark 3. As a by-product, we obtain that in Theorem 1 we actually
have the equivalence relation

Y« (f) e < g4(f) € L,

provided 1 <p <o, 1 <A <o and 0 <a < min(1/p,1/q).

Indeed, it is enough to check the implication <. Assume g,,(f) € L*
By Lemmas 8 and 7, I(f) € L*. By Theorem 2, y(f) € L*. By (4.4) and
(4.5) in the proof of the Necessity in Theorem 2, we have y(f) e L.
Finally, by Lemma 9, we find the desired relation y,(f) € L.

Remark 4. Analogously, one can establish the equivalence relation
v«(f) € L =g (f) € L

for specified values of p, A, and «. The corresponding reasoning should
involve the function

. d U pdy v R
gl — t € R.
5 (f,x,y) ; ,

g(f,t) = { o

Remark 5. The machinery elaborated in this paper is also appropriate
to characterize the saturation class concerning the strong approximation of
order p of a periodic function f € L} = L'(—, ) by the partial sums
s,(f, t) of its Fourier series in L’_-norm, where 2 < p < @and 1 < A < .
A slight difference arises by the fact that L, > L5 for all r > 1, while
LY(R) and L"(R) are incomparable.

THEOREM 3. Let fell, , 1<p<w®, 1<A<x® and 0<a<
min(1/p,1/q), where 1/p + 1/q = 1. Then

w© A/p
/ (En”-'ls,,(f,n—f(rn”) dr < = (5.1)
T \n=1}

if and only if

AL

/p

f(t+u)—f(t—u) u} e 52)
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The nth strong approximation of order p of f by the partial sums
s.(f, 1) of its Fourier series is defined by

n 1/p

Y sc(fo0) = ()]

n+ 1,5

wr(fr) =

According to Theorem 3, the saturation class in L*-norm is the (periodic)
Lizorkin-Triebel space F)’, on the torus, where « = 1/p,2 < p < =, and
1 <A <ee,

The equivalence relation (5.1) < (5.2) was proved by Sunouchi [5] for
1 <p<A<xand a =1/p. His proof hinges upon a lemma which is
implicitly included in [2] by Flett. Unfortunately, there are two errors in
[2): see {4.11) and Theorem 11 on p. 368 as well as Theorem 20 on p. 374
(cf. what is said on p. 378).
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