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Let f be a real valued function which belongs to L' ,= U( - 00. (0) for some
1 s r < 00. We consider the cosine transform !C. sine transform 1,. (complex)
Fourier transform f, and Hilbert transform f of f. We study the strong approxi
mation of order P. 0 < P < 00, of f and f by their Dirichlet integrals, respectively.
We prove that the saturation class in LA-norm is the Lizorkin-Triebel space Ft p'

where it = lip, 2 s p < 00, and 1 < A < 00. To this effect, we introduce several
so-caned Littlewood-Paley functions and make use of a number of equivalence
theorems. Our machinery is also appropriate to characterize the saturation class
concerning the strong approximation of order p of a periodic function f E L~", ,=
L'( -7r, 7r) by the partial sums of its Fourier series in L3".-norm. where again
2 s p < 00 and 1 < A < 00. © ·1994 Academic Press. Inc.

1. PRELIMINARIES

We recall the basic notions in the theory of Fourier transforms (see,
e.g., [6, Chaps. 1-5]). Let f be a real valued, Lebesgue integrable function
on the real line, in sign: fELl := L1(R), R:= (-00,00). Let

A 1 ""
fc(u) := - f f(t)cos utdt

7T -""

be the cosine transform and

(1.1 )

1 ""
fs(u):= 7Tf_J(t)sinutdt,

the sine transform of f.

u E R, ( 1.2)
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These definitions make sense also in the case when f E L' := L'(R) for
some 1 < r ~ 2, since the integrals on the right-hand sides of 0.0 and
0.2) converge in L"-norm, where l/r + l/r' = 1. In other words, the
integral f~ x is meant as the limit in L" -norm of {:,2T1 as T[, T2 --: 00. W~

note that in the case where f E L' for some 2 < r < 00, then fe and fs
exist only in the sense of a tempered distribution, and they are not
functions in general.

The Dirichlet integral of a function f E L\ is defined by

sv(f, t) := {{f;( U)cos tu + !,( u )sin tu} du, (1.3)
o

the conjugate Dirichlet integral by

sv(f, t) := {{f;,(u)sin tu - f~(u)cos tu} du, (1.4)
o

the Riesz mean (of first order) by

av(f,t):= {(1- ~){f;(U)costu +!,(u)sintu}du, (1.5)

and the conjugate Riesz mean (of first order) by

av(f,t):= {J(I_ ~){J:,(u)sintu -fs(u)costu}du,

From 0.1)-0.6) it follows immediately that

1", sin vu
sv(f,t)=-! f(t-u)--du,

7T -00 u
1 00 1 - cos vu

sv(f,t)=-! f(t-u) du,
7T -00 U

which justify the use of the term "Dirichlet integral," and

1 '" 1 - cos IIU
av(f,t)=-! f(t-u) 2 du,

7T -00 vu

1 00 ( I sin II u )
av(f, t) = -! f(t - u) - - --2 duo

7T - 00 U IIU

v> 0, t E R.

( 1.6)

(1. 7)

( 1.8)

( 1.9)

( 1.10)

From now on, it suffices to assume that f E L' for some 1 ~ r < 00,

since the integrals on the right-hand sides of (1.7)-0.10) exist in the
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Lebesgue sense, due to Holder's inequality. Thus, we will use (1.7)-0.10)
in the capacity of the definitions of sv(J), 5,,(f), aJJ), and ii,/J) for
functions f belonging to L' for some 1 :::; r < 00. Furthermore, we have

(1.11)

( 1.12)

which explain that aJJ) and iiJJ) are also called the "Cesaro means"
of f.

Let z := X + iy be a complex number with y > O. As is known, the
Cauchy transform of f is defined by

(1.13 )

It is plain that (/>(f, z) as a function of the complex variable z is analytic
on the upper half plane.

We remind the reader that the Hilbert transform / of a function f E L'
for some 1 :::; r < 00 is defined by

- Ij"'f(U) . Ij"'f(t+U)-f(t-U)
f(t):= - --du = - hm- duo (1.14)

1T" -oct - U E~O 1T" E U

This integral as well as the limit

(/>(f, t) := lim(/>(f, t + iy) = f(t) + i/(t)
y~(J

exists and we have

(/)- (t) = -f(t)

( 1.15)

(1.16)

for almost all t E R. By a famous theorem of M. Riesz, if f E L' for some
1 < r < 00, then / E L' and

t E R. ( 1.17)

Remark 1. We note that we could equally use complex notations.
Namely, the (complex) Fourier transform of a function fEU is defined
by

A 1 joo .
f(u):= - f(t)e-I/Itdt,

21T" -00

U E R.
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By (1.1) and (1.2), we have

GIANG AND MORICZ

A 1{A A}
f(u) = "2 fc(u) - ifs(u) .

Assume that f E L' for some 1 S r < 00. Then the Dirichlet integrals and
Riesz means of f can be expressed as

sv(f, t) = r f(u)e 'lll du,
-v

sv(f,t) = jV (-isignu)f(u)eiIl1du,
-v

j v( IUI)Auv(f, t) = 1 - - f(u)e illl du,
- v jJ

j v ( lui) Aa,.(f,t) = 1- - (-isignu)f(u)eiIl1du,
- v jJ

jJ > 0, t E R,

where the left-hand sides are defined by 0.7)-0.10), respectively.

2. MAIN RESULTS

Let f E L r for some 1 s r < 00 and define

'df, t) := sv(f, t) - uv(f, t),

Tv(f, t) := sv(f, t) - av(f, t),

By (l.l 1), 0.12), and (1.l7), we have

Furthermore, let a E R and define

jJ > 0, t E R.

(2.1 )

THEOREM 1. Let f E L' for some 1 s r < 00, and let 1 < p < 00,

- 00 < a < 1. Then

t E R. (2.2)
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Here and in the sequel, by C (endowed with certain subscripts) we
denote positive constants (depending only on the subscripts indicated)
whose value may be different at different occurrences.

Let I < P < 00 and define q by lip + l/q = 1. The main result of this
paper reads as follows.

THEOREM 2. Let f E LP n LA for some 1 < p < 00, 1 < A < 00, and let
o < a :::; minO/p, l/q). Then

if and only if

P lip

{1"'lf(t + u) - f(t - U), dU}
I(f,t):= - ELA•

o u a U

(2.3)

(2.4)

Assume f E L' for some 1 :::; r < 00 and 0 < p < 00. We define the
strong approximation of order p of f by its Dirichlet integral as

By Holder's inequality,

T> 0, t E R.

3"!(f, t) :::; 3"!'(f, t) if 0 < p < PI < 00. (2.5)

It is easy to find the saturation order in LA-norm, where 0 < A < 00.

Indeed, if

as T ~ 00,

then we necessarily have

1'" P
jsv(f,t) -f(t)1 dv=O

o

for almost all t E R. Fix such t, then sv{f, t) = f(t) for all v > O. Conse
quently, !(t) = 0 for almost all t E R. In other words, the saturation
order is &(T-1Ip).
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Now, Theorem 2 makes it possible to determine the saturation class in
U-norm, where 2 ::; p < 00 and I < A < 00. Namely, if

as T -+ 00,

then we necessarily have

( 2.6)

This coincides with (2.3) in the particular case where a = lip. By virtue
of Theorem 2, relation (2.6) is equivalent to (2.4) for a = I/p, 2 ::; p < 00,

1 < A < 00, which in turn is equivalent to the fact that f E FA~ P' the
so-called Lizorkin-Triebel space (see the remark made after Lemma 5
below).

Remark 2. The symmetric counterpart of Theorem 2 says that

(cf. (1.17» if and only if

( 1

_ - I
P

) lip- fOC f( t + u) - f( t - u) du
/(J,t) = a - ELA

•
() U U

(2.7)

(2.8)

By virtue of Lemma 6, conditions (2.4) and (2.8) are equivalent. Hence,
conditions (2.3) and (2.7) are also equivalent. In particular, this solves the
problem of the strong approximation in LA-norm of the Hilbert transform
f by the conjugate Dirichlet integral, too.

3. AUXILIARY RESULTS

Let z := X + iy with y > O. By (1.1), (1.2), and (1.13),

I :xl :xl

$(f, z) = - f f(t) dt1ei(Z-t)u du
17' -:xl ()

= ~ f:xl f(t) dt
/17' -00 t - z

= U(f, x, y) + iU(f, x, y), (3.1 )
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where

1 x y
U(f,x,y):= - f f(t) 2 dt

1T -x (X-t) +y2

is the Poisson integral and

_ 1 x x-t
U(f, x, y) := - f f(t) 2 dt

7T -x (X-t) +y2
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is the conjugate Poisson integral of f. Similarly to (1.17) and (2.1), we have

U(f,x,y) = U(!,x,y). (3.2)

LEMMA 1. Let f E L' for some 1 ~ r < 00, and let z := X + iy with
y > O. Then

o a _
iep'(f,z) = -U(f,x,y) + i-U(f,x,y),

oy ay
a2 a2 _

j2epll(f, z) = -2U(f, X, y) + i-
2

U(f, X, y).
ay oy

Proof Both equalities can be obtained by direct calculation starting
with (3.1) and taking into account that

1 x f( t)
ep'(!,z)=~f 2 dt ,

11T -00 (t - z)

epll(f, z) = ~ r: f(t) 3 dt.
17T -x(t -z)'

LEMMA 2 (see, e.g., [3, p. 569]). Let f E LP for some 1 < p < 00, and
let 0.$ b < 1,0.$ a := b + p - 2. If 1!<tWltl a ELI, then Ie exists in the
sense of an ordinary function and

An analogous conclusion holds if Ie is replaced by is.
This inequality is known as Pitt's inequality. The special case where

a := 0, b:= 2 - p, and 1 < p ~ 2 is known as the Hardy-Littlewood
inequality.



278 GIANG AND MORICZ

The next lemma is an extension of the famous inequality of M. Riesz
from a single function to a sequence of functions.

LEMMA 3 (see, e.g., [3, p. 491]). Let {fir): j = 0,1, ... } be a sequence
of functions belonging to LA for some < A < 00 and let 1 < p < 00. Then

(3.3)

Here and in the sequel, we adopt the notation

We note that the particular case where p = 2 and 1 < A < 00 is an
immediate consequence of a theorem of Marcinkiewicz and Zygmund
(see, e.g., [3, p. 484]). Their reasoning can be slightly improved by interpo
lating with the obvious case: 1 < A = P < 00. The general case stated in
Lemma 3 is due to Boas and Bochner [1].

The next lemma is an extension of Lemma 3 from the discrete case to
the continuous one.

LEMMA 4. Let {fv(r): v > O} be a collection of functions belonging to LA
for some 1 < A < 00 and let 1 < p < 00. Furthermore, assume that, for
almost all t E R, both fv(r) and f,{t) are continuous functions with respect
to v on the interval (0,00). Then

We conjecture that inequality (3.4) holds without the assumption of the
continuity of fJt) and f,(t) in v. However, we will apply Lemma 4 in the
case when fv(t) := v,,-(1/P){sJf, r) - O'v(f, t)} (see (1.3) and (1.4». Clearly,
fv(t) is continuous, even analytic in v for all t E R. The same is true for

iv(t) (see (1.5), (1.6), and (1.17», provided 1 < p < 00, which is the case in
our Theorem 2.

Proof Clearly, it is enough to deal with the case where

( 3.5)
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Then for almost all t E R we have
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Fix such t E R with the additional property that both fv(t) and !.,{t) are
continuous with respect to II on (0,00).

Choose 0 < e < A < 00 and consider a sequence of partitions

such that

e := t~ < t~ < '" < tt =: A, k = 1,2" .. ,

as k -> 00.

Then the expressions involving Riemann sums

and

h k k k f 11' d k th d'were tj _I S IIj S tj or a } an ,converge to e correspon mg
Riemann integrals

and {
A P }l/P

G(t):= ~ I.t:(t) I dll ,

respectively, as k ~ 00. This is true for almost all t E R.
By Lemma 3 and 0.5),

By Fatou's lemma,
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Letting E -+ 0 and A -+ 00, hence we conclude that

(3.6)

Now, (3.4) follows from (3.5) and (3.6).

The equivalence statements formulated in Lemmas 5 and 7 below are
due to Triebel [7]. Actually, we need their particular form corresponding
to the case where

j = 0,1, ... ,

and accordingly,

r.p(uD)f(t) := f(t + u) - f(t - u).

(These notations are taken from [7].)

LEMMA 5 (see [7, pp. 100-101]). Let fEe for some 0 < A < cc and
let 0 < p < 00, a E R. Then (2.4) is satisfied if and only if

We note that the Lizorkin-Triebel space FA~ p is defined by (3.7). By
Lemma 5, an equivalent norm in FA~I' is defined by (2.4).

Let

I' 1/1'._ {J OC /4>(f, t + u) - 4>(f, t - u) I dU}
!*(f,t).- ,

o UO u

Combining the obvious inequalities

max{!(f,t),!(f,t)} :<;;,!*(f,t) :<;;,!(f,t) +!(f,t)

t E R.

with Lemmas 3 and 5 yields

LEMMA 6. Let f E LA for some 1 < A < 00 and let 1 < p < 00, a E R.
Then
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Following the pattern of g2 *(j), let

Then

t E R.
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(d. 0.2».

LEMMA 7 (see [7, pp. 151-152]). Let f E LA for some 0 < A < (XJ and
let 0 < p < 00, -(XJ < Q' < 2 - (I/min(A, p». Then

Combining the obvious inequalities

with Lemmas 6 and 7 yields

LEMMA 8. Let f E LA for some 1 < A < 00 and let 1 < p < (XJ, -Xl < Q'

< 2 - O/min(A, p)). Then

g2(f) E e = g2(f) E e = g2*(f) E LA.

Following the pattern of y *(j), let

t E R.

Then

(d. (2.1). As a consequence of Lemma 4, we obtain the following

LEMMA 9. Let f E LA for some 1 < A < Xl and let 1 < P <Xl, Q' E R.
Then

640/79/2-9
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So far, we have defined the functions y(j), l'*(j), Yl(j), gij), and
g2*(j). In Sections 4 and 5, we will define yij), gl *(j), and gl(j). All
these are called Littlewood-Paley functions (d. [8, Vol. 2, Chaps. 14, 15]).

4. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. Part 1. By 0.3)-0.6),

I f" A A •7,,(f, t) + iT,,(f, t) = - u{f( u) - if, ( u) }el/ II du,
v ()

whence

Z := X + iy, y > 0, t E R.
z

By Holder's inequality,

I
cfJ'(f,t+X+iY )/1' f?C P
----.-- ~ IV"{71'(f, t) + iTl'(f, t)}1 e-l'Y dv

x + IY ()

(4.1 )

where

I 1
- + - = 1
p q ,

and r is the common gamma function. Hence

f
?C IcfJ' (f, t + x + iy) II'y2 p -l- a l' . dy

o x + ly

~ Ca.p j?CIv"{7,.(f, t) + iTv(f, t)}I
P

dv fooe-"Y dy
() 0

=Ca,py~(f,t), tER.
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Setting x := 0 yields
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Part 2. Taking the derivatives of both sides in (4.1) with respect to
z, we get

i[OV 2{Tv(f,X) + iTv(f,x)}ei"'dv
()

cP" (f, t + z) cPr(f, t + z)

z

By Holder's inequality,

Z := X + iy, y > 0, t E R.

(4.3)

I
cP"(f, t + z) _ cP'(f, t + z) I

P

Z Z2

~ {faoov2ITv(f,t) + iTv(f,l)le-VYdVr

{ }

P-I

~ jOOIVa{Tv(f, t) + iTv(f, t)W e- vy dv [0v(2-a)qe- vy dv
o 0

C '"
= 3p:;~apllva{Tv(f,t) +iTv(f,t)}IPe-VYdv,

y 0

where this time

I 1
-+-=1.
P q

Hence

fa
"'y3P-I-apl cP"(f'zt + z) ([)'(f, t + z) jP

----- - Z2 dy ~ Ca.p'Y~(f, t).

Setting x := 0 and making use of Minkowski's inequality yields

g 2* (f, t) ~ C~~g'Y *(f, t) + g I *(f, t ) ,

Taking into account (4.2), we conclude (2.2).

t E R.
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Proof of Theorem 2. Necessity. Assume (2.3). By Minkowski's inequal
ity,

(4.4)

where

t E R.

By (1.1 1) and [4, Lemma 5], we get

Y2U,t) = {fOO/va-1 [{S/LU,t) - f(t)}dlL/PdV}l/P
o 0 v

~ (1 - a) - IY1U, t) . (4.5)

Combining (2.3), (4.4), and (4.5) yields y(f) E U. By Lemma 9, we have
y*(f) E LA. Applying Theorem 1 and Lemmas 8 and 7, we conclude (2.4).

Sufficiency. Assume (2.4). By (1.8) and 0.14), we have

_ 1 00 f( t + u) - f( t - u)
SvU, t) - f(t) = - f cos vudu,

1T --0 u

provided !<t) exists, where r: (J := lim, t (J 1,00. Applying Lemma 2 with
b := 1 - ap ~ 0 and a := pO - a) - 1 ~ 0, we obtain

Yl(!,t) = ~{fOOvap-llfoo f(t + u) - f(t - u) cosvudulP dV}IIP
1T 0 --0 U

P lip

~ C~::{~)oolf(t+ u) : f(t - u) I up(l-aj-l dU}

=C~::IU,t) (4.6)

for all t E R. The symmetric counterpart of (4.6) says that we have

(4.7)

also for all t E R. It remains to apply Lemma 6 in order to conclude (2.3).
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5. CONCLUDING REMARKS
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Remark 3. As a by-product, we obtain that in Theorem 1 we actually
have the equivalence relation

provided 1 < p < 00, 1 < A < 00, and 0 < a .:0;:;; min(l/p, l/q).
Indeed, it is enough to check the implication =. Assume g2*(n E LA.

By Lemmas 8 and 7, l(n E LA. By Theorem 2, 'Yl{f) E e. By (4.4) and
(4.5) in the proof of the Necessity in Theorem 2, we have 'Y(f) E LA.
Finally, by Lemma 9, we find the desired relation 'Y *(n E e.

Remark 4. Analogously, one can establish the equivalence relation

for specified values of p, A, and a. The corresponding reasoning should
involve the function

t E R.

Remark 5. The machinery elaborated in this paper is also appropriate
to characterize the saturation class concerning the strong approximation of
order p of a periodic function f E L~1T := L 1

( -77',77') by the partial sums
sn{f, t) of its Fourier series in L~1T-norm, where 2 .:0;:;; P < 00 and 1 < A < 00.

A slight difference arises by the fact that L~1T ::J L21T for all r > 1, while
L1(R) and Lr(R) are incomparable.

THEOREM 3. Let f E L~1T' 1 < P < 00, 1 < A < 00, and 0 < a .:0;:;;

min(l/p, l/q), where l/p + l/q = 1. Then

(5.1 )

if and only if
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The nth strong approximation of order p of f by the partial sums
S k( f, t) of its Fourier series is defined by

According to Theorem 3, the saturation class in e-norm is the (periodic)
Lizorkin-Triebel space FA~P on the torus, where a = lip, 2 ~ p < 00, and
1 < A < 00.

The equivalence relation (5.1) - (5.2) was proved by Sunouchi [5] for
1 < p ~ A < 00 and a = lip. His proof hinges upon a lemma which is
implicitly included in [2] by Flett. Unfortunately, there are two errors in
[2]: see (4.11) and Theorem lIon p. 368 as well as Theorem 20 on p. 374
(cf. what is said on p. 378).
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